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INTRODUCTION

The main goal of this chapter is to provide a brief synopsis of recent
research in the field of applied psychophysiology. More specifically, we
describe several studies that together begin to define the techniques and
situations in which psychophysiological measures may provide important
insights into human information processing activities of relevance to
automated systems. Our review will focus on one class of psychophysiolo-
gical measures —event-related brain potentials (ERPs)—and, for the most
part, the measurement of a single but multidimensional psychological
construct —mental workload. We do not mean to imply from our restricted
treatment of the literature that we believe that other psychophysiological
techniques have limited utility in the assessment of operator state in
automated systems. In fact, psychophysiological measures such as heart
rate and eye movements show great promise for the assessment of human
information processing activities in simulated and operational contexts.
However, we have chosen the path of providing a somewhat in-depth
discussion of one particular psychophysiological technique rather than a
broader but more superficial treatment of the applied psychophysiology
literature (for more comprehensive treatments of this literature, see
Kramer, 1991; Kramer & Spinks, 1991; Wilson & Eggemeier, 1991).

As argued by a number of researchers (Sheridan, 1987; Wickens, 1992),
automation has, in many cases, changed the nature of rather than dimin-
ished the processing demands imposed on human operators. Instead of
manually controlling the inner loop components of systems such as aircraft,
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manufacturing, and chemical processes, humans are now involved in
monitoring system parameters and occasionally intervening in the operation
of the system to detect, diagnose, and correct system malfunctions. One
important by-product of this shift in roles for human operators is that it has
become more difficult to infer the operators’ information processing
activities and strategies. In manual and semi-automated systems, human
operators were constantly engaged in making analog and discrete inputs in
an effort to maintain the state of the system within an acceptable range.
These control inputs and adjustments could, in turn, be used as a yardstick
against which to measure the operators’ performance and to infer whether
the operator was under- or overloaded or had missed critical system
information.

However, overt performance is often quite sparse in automated systems,
because the operators only occassionally intervene to adjust system param-
eters or conduct tests. In such cases, it is often difficult to determine the
extent of operators engagement in automated systems. In fact, there is now
a sufficient body of data to suggest that operators are often slower and less
accurate in detecting and diagnosing system malfunctions when they serve
as system supervisors than when they are involved in actively controlling a
system (Bortolussi & Vidulich, 1989; Ephrath & Young, 1981; Kessel &
Wickens, 1982). Such studies clearly suggest a need for human information
processing assessment techniques that do not rely solely on the occurrence
of overt control actions.

One solution that has been proposed to reduce the operator’s workload
while still keeping him or her “in the loop” is adaptive aiding. The concept
of adaptive aiding involves the use of automation only when the operator
requires assistance to meet task demands. Otherwise, the operator main-
tains control of the system functions, often by manually controlling system
parameters, and therefore remains in the loop (Rouse, 1988; Wickens,
1992). Commercial and military piloting is one environment in which
adaptive aiding has been employed for many years. In this setting the pilot
can offload manual control responsibilities by engaging the autopilot.

Although the use of adaptive aiding allows for more flexible distribution
of tasks between computers and human operators, and therefore can
potentially enhance overall system effectiveness, the concept of adaptive
aiding has also generated a number of interesting and important questions.
Although many of these questions are beyond the scope of this chapter (but
see Scerbo, chap. 3, this volume) one important issue that could potentially
benefit from use of psychophysiological measures concerns the basis for
deciding whether aiding is needed. Two different approaches have been
examined in previous studies. One approach involves the use of human
performance models to predict how well an operator is likely to perform a
task given changing task demands and human resources (Govindaraj &
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Rouse, 1986; Greenstein & Ravesman, 1986). The other approach has
involved online assessment of performance, which, in turn, has been used to
infer operators’ intentions and capabilities to successfully complete system-
relevant tasks (Geddes, 1986). Given the sparsity of overt human actions in
many modern-day systems as well as the imperfect mapping of performance
to intentions and mental processes, it appears reasonable to ask whether
psychophysiological measures can be used to improve the assessment and
prediction of human performance in complex systems. In the following
sections of this chapter, we discuss the potential of psychophysiological
techniques for the assessment of information processing activities of human
operators in adaptively automated systems.

PSYCHOPHYSIOLOGICAL MEASURES:
ADVANTAGES AND DISADVANTAGES

In an effort to adhere to the truth-in-advertising dictum, we would be
remiss if we did not describe both the advantages as well as the disadvan-
tages in the use of psychophysiological measures, and more specifically
ERPs, in the assessment of psychological processes of relevance to auto-
mated systems. We begin with the disadvantages. ERPs, and psychophy-
siological measures in general, are relatively expensive and time consuming
to acquire, analyze, and interpret, at least in comparison to most perfor-
mance and subjective measures that have been obtained in extra-laboratory
settings. However, over the past decade the cost for the specialized
equipment necessary to record ERPs (e.g., amplifiers, transducers, a/d
conversion boards, large data storage media) has decreased quite substan-
tially such that the hardware and software can now be purchased for
somewhere in the neighborhood of $30,000. The interpretation of the data
is another matter. The complexity of the ERP waveform as well as the
substantial theoretical and empirical literature that relates ERP components
to different psychological processes precludes a cookbook approach to data
interpretation. Thus, it is necessary to have a knowledgeable psychophy-
siologist involved in any research or assessment project.

A related point concerns the complexity of signal extraction and analysis
and the detection of potential artifacts. Although artifacts are certainly a
concern even with the recording of reaction time and accuracy measures,
the magnitude of the problem is often larger for physiological measures.
For example, many ERP components can be contaminated by other
electrical activity, such as that generated by eye, neck, and body move-
ments. Artifacts also arise from inadequate electrode placement and
saturation of the a/d channels. Although knowledge of signal characteris-
tics and analytic procedures along with careful data recording protocols can
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eliminate or reduce the impact of many of these potentially confounding
factors, a good deal of technical expertise is necessary to ensure successful
data collection and signal extraction.

Another concern with many ERP recording procedures is the potential
intrusiveness of the methodology. For example, although ERPs, and the
P300 component of the ERP in particular, have been found to be a sensitive
index of perceptual/cognitive processing demands, many of the laboratory
studies that have demonstrated this relationship have done so by using a
secondary task methodology. With this method subjects are asked to
perform a primary task to the best of their ability and devote any spare
capacity to the performance of the secondary task. ERPs are elicited by the
secondary task stimuli. The underlying assumption adopted with the use of
this methodology is that any processing resources that remain after the
performance of the primary task will be devoted to secondary task
performance. The ERPs are assumed to tap these spare resources. In fact,
a number of studies have found that the amplitude of the P300 component
of the ERP elicited by the secondary task stimuli systematically decreases
with increases in the difficulty of the primary task (Isreal, Chesney,
Wickens, & Donchin, 1980; Isreal, Wickens, Chesney, & Donchin, 1980;
Kramer, Sirevaag, & Hughes, 1988; Kramer, Wickens & Donchin, 1983,
1985) and with increases in the priority of the primary task (Strayer &
Kramer, 1990). Although the ERP-based secondary task technique has been
quite useful in exploring theoretical issues concerning attention and re-
source allocation and the development of automatic processing, the require-
ment to perform an extraneous task renders it difficult to apply in
operational contexts in which operators may already be overburdened by
task demands.

Two solutions to the intrusiveness problem have been pursued. In one
procedure, hereafter to be referred to as the primary task technique, ERPs
are elicited by discrete events within the task of interest. In this context ERP
components, and in particular the P300, have been found to increase in
amplitude with increases in the difficulty or priority of the task, presumably
reflecting the allocation of additional processing resources or attention for
more difficult or high-priority tasks (Mangun & Hillyard, 1990; Sirevaag,
Kramer, Coles, & Donchin, 1989; Ullsperger, Metz, & Gllle, 1988; Wick-
ens, Kramer, Vanasse, & Donchin, 1983). The primary task method can be
quite useful in settings in which it is possible to trigger ERPs on the basis of
discrete task-relevant events. Such events might include the occurrence of
new aircraft on an air traffic controller’s console, the presentation of
updated system status information on a automated manufacturing control
screen, or the presentation of new navigational fixes on an aircraft pilot’s
CRT. Unfortunately, however, there are situations or time periods in which
few such discrete events occur but an assessment of operator state is still
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desired (e.g., monitoring of a sonar display or the status of a process
control plant). Furthermore, it is often difficult, particularly in operational
settings, to modify the system hardware and software to accommodate the
acquisition of ERPs. Finally, the comparison of primary task ERPs across
dissimilar tasks and systems requires the tenuous assumption that all
primary task events require the same variety of processing resources or
attention.

One alternative to primary and secondary task methods of ERP recording
has been referred to as the irrelevant probe technique (Papanicolaou &
Johnstone, 1984). This technique involves the recording of ERPs to
auditory or visual probes that accompany the task of interest. However,
unlike the secondary task method, which requires that subjects actively
respond or count the probes, the probes are ignored in the irrelevant probe
technique. Thus, this technique has the same advantages associated with the
secondary task method while minimizing the potential for disturbing the
performance of the task of interest. The theoretical rationale is essentially
the same for the irrelevant probe technique as it is for the secondary task
method. That is, that increases in the difficulty of the primary task will
result in increased resource allocation to the primary task with a concom-
itant decrease in the resources available for the processing of the probes. We
illustrate how this method can be used to examine mental workload in
simulated real-world tasks in a later part of this chapter.

One additional concern about the use of psychophysiological measures as
indices of human information processing activities is the amount of data
that is necessary to reliably identify changes in mental workload, alertness,
or whether an operator has failed to attend to a critical signal. In laboratory
situations, ERPs are elicited by a number of presentations of a stimulus,
and then these single-trial ERPs are averaged in an effort to enhance the
signal-to-noise ratio of the critical ERP components. Although such a
procedure is reasonable in the laboratory, it may not suffice in situations in
which moment-to-moment variations in operator state is of concern. Later
in this chapter we describe a program of research in which we have begun
to examine the degree to which ERPs can be expected to tap dynamic
changes in operator state.

Thus far, we have focused on the problems, as well as some potential
solutions, in the use of psychophysiological measures for the assessment of
aspects of human information processing in extra-laboratory situations.
However, psychophysiological measures also possess a number of strengths
that make them well suited for the assessment of aspects of human
cognition of relevance to adaptively automated systems. For example,
mental workload has been defined as the interaction between the structure
of systems and tasks on the one hand, and the capabilities, motivation, and
state of the human operator on the other (Gopher & Donchin, 1986;
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Kramer, 1991). More specifically, mental workload has been defined as the
information processing costs a human operator incurs as tasks are per-
formed. In recent years, processing costs have been conceptualized in terms
of multiple resources with performance decrements resulting when two or
more tasks exhaust the supply of a particular variety of processing resource
(Wickens, 1992).

Given the multidimensional nature of mental workload and other psy-
chological constructs (e.g., memory, attention, language processes), it is
fortunate that ERP components, which are defined with respect to their
polarity, scalp distribution, and latency range, have been found to be
sensitive to a variety of different information processing activities. For
example, the P100 component, a positive going voltage deflection that
occurs within 100 milliseconds following a stimulus, is specifically sensitive
to the allocation of attention to a particular region of the visual field. The
mismatch negativity (MMN), which is a negative going difference wave that
occurs approximately 150 to 250 milliseconds poststimulus, provides an
index of the extent to which a particular stimulus matches a predefined
template (e.g., Is that the musical note I heard a few seconds ago?). The
P300 component appears to reflect stimulus evaluation processing, whereas
the N400 component reflects the detection of semantic mismatch. Thus, one
advantage of psychophysiological measures, and ERPs in particular, is that
they are inherently multidimensional in nature. That is, the components
that can be found in a single one-second waveform reflect a multitude of
information processing activities.

A second advantage of psychophysiological measures is that they can be
recorded in the absence of overt behavior. Thus, a manual or vocal action
is not required for the elicitation of many ERP components. Given that
control inputs are often sparse in automated systems, psychophysiological
measures may be used to provide insights into human information pro-
cessing activities that would otherwise be unavailable with traditional
performance measures. Finally, psychophysiological measures are recorded
relatively continuously and therefore offer the potential to provide a rapid
assessment of changes in operator state. However, as discussed previously,
an important question concerns the amount of psychophysiological data
that is required to unambiguously discriminate among different operator
states. In an effort to provide a partial answer to this question, we now
describe a study that was designed to examine the feasibility of employing
ERPs to measure dynamic changes in mental workload.

REAL-TIME ASSESSMENT OF MENTAL WORKLOAD: A
FEASIBILITY STUDY

The main goal of the study that we now briefly describe was to determine
the amount of ERP data that would be necessary to reliably discriminate
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among several different levels of single and dual-task processing load (see
Humphrey & Kramer, 1994, for a detailed description of this study). To
that end, 12 young adults performed two complex tasks, monitoring six
constantly changing gauges and performing mental arithmetic problems,
both separately and together. ERPs were recorded from discrete events in
both of the tasks, the presentation of the cursors in the monitoring task and
the presentation of the operators and operands in the mental arithmetic
task, and a monte carlo approach was used to relate different amounts of
ERP data to different levels of accuracy in discriminating among variations
in mental workload.

The two tasks that were performed by the subjects are presented in Fig.
7.1. Each of the gauges in the monitoring task were divided into 12 regions.
The different regions were coded numerically (i.e., the numbers 1 to 12) and
with color (i.e., 1 to 4 were green, 5 through 8 were yellow, 9 through 12
were red). The subject’s task was to reset each gauge as quickly as possible
once its cursor had reached the critical zone which was redundantly defined
by number (> 9) and color (red). Subjects reset the gauges by depressing
one of the six editing keys from a standard IBM AT keyboard with their
right hand. Each key corresponded to a specific gauge. The gauge-to-key
mapping was spatially compatible.

In order to encourage subjects to learn the relationships among the
movement of the cursors in the different gauges, and in an effort to
simulate the sampling strategies required with physically displaced gauges in
operational systems, subjects could only view the position of the cursors
one at a time. Thus, although the gauges were always present on the screen,
the cursors were not continuously visible. To sample a gauge, (i.e., to see
where the cursor was located), the subjects pressed one of a set of six keys
with their left hand. Once sampled the cursor remained visible for 1,200
milliseconds. Simultaneous sampling was not possible.

The difficulty of the monitoring task was manipulated by varying the
degree to which the position of the cursor on one gauge could be predicted
from the position of the cursor on another gauge. In the high-predictability
(HP) condition, the gauge monitoring functions were equivalent for the
three gauges within a row. The only difference between these gauges was a
phase offset (i.e., the cursors began at different positions on the gauges).
In the low-predictability (LP) condition, each of the gauges was driven by
a separate forcing function.

The center of each gauge served as a display area for the operators and
operands for the arithmetic task (see Fig. 7.1). All of the operators and
operands were presented simultaneously, with one operand in each gauge
and one operator for every two gauges. Arithmetic problems were presented
every 4 to 15 seconds following the completion of a previous problem.
Subjects were instructed to complete the problems as quickly and as
accurately as possible. The difficulty of the mental arithmetic task was
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FIG.7.1. A graphic illustration of the monitoring and mental arithmetic tasks along

with the response input devices.

manipulated by varying the number of column operations necessary to
complete the problem. The A2 version of the task required operations on
two columns of numbers, whereas the A3 version of the task required
operations on three columns of numbers. Operations included addition and
multiplication. Answers were entered via the numeric keypad on the IBM
AT keyboard and appeared in the window as they were typed.
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Subjects performed the mental arithmetic and monitoring tasks, both
separately and together, during five two-hour sessions. Electroencephalo-
graphic (EEG) activity was recorded from three midline sites—Fz, Cz, and
Pz—according to the International 10-20 system (Jasper, 1958). Vertical
electrooculographic (EOG) activity was recorded from electrodes placed
above and below the right eye. Horizontal EOG was recorded from
electrodes located lateral to each eye. The EOG and EEG were digitized
every 5 miliseconds and were filtered offline (-3dB at 6.89 Hz, 0dB at 22.2
Hz). Trials that were contaminated by excessive EOG artifacts were not
included in subsequent analyses of the ERP components. Fewer than 5% of
the trials were rejected for excessive EOG artifacts.

RESULTS AND CONCLUSIONS

The performance data, reaction time (RT) and accuracy, were analyzed to
ensure that we had successfully varied both single- and dual-task processing
demands. RTs decreased from the HP to the LP condition in the moni-
toring task and from the two to the three column problems in the mental
arithmetic task. Error rates behaved in a similar manner. Furthermore,
performance was significantly poorer in the single-task than in the dual-task
conditions.

After establishing that we had, in fact, successfully manipulated task
difficulty as indexed by the performance measures, our next step was to
determine if average ERPs differed among different task conditions. This
was necessary because it would not make sense to ask how much ERP data
was necessary to discriminate between different levels of mental workload
if we could not show reliable ERP differences when large numbers of single
trials were averaged. The grand average ERPs elicited in a subset of the task
conditions for both the monitoring and mental arithmetic tasks are
presented in Fig. 7.2. As can be seen from the figure, single- and dual-task
ERPs are visually dissimilar for both the monitoring and mental arithmetic
tasks. These differences, which were corroborated in ANOVAs, are most
obvious in the region of the P300 component (i.e., 300 to 500 milliseconds
poststimulus) and the later slow wave (i.e., from 750 to 1200 milliseconds
poststimulus).

Given that we had now established that the different task conditions
could be distinguished on the basis of averages of large numbers of
single-trial ERPs, we were now able to proceed in addressing our original
research question: How much ERP data is necessary to discriminate
between different levels of mental workload? Of course, the answer to this
question depends on the specification of a level of accuracy with which
workload conditions can be discriminated. Given that the level of accept-
able discrimination accuracy might vary in different situations and for
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arithmetic task when performed concurrently with the low predictability monitoring
task.
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different systems, we adopted a monte carlo approach in which we
systematically incremented the amount of ERP data that were averaged
prior to discriminating between workload conditions. This approach has
enabled us to relate, in a relatively continuous manner, different levels of
accuracy of discrimination to different amounts of ERP data.

Our approach to this issue included the following steps. First, we chose
two sets of experimental conditions that differed in perceived workload,
performance, and average ERP measures. In an effort to evaluate the
reliability of ERP measures in discriminating between levels of workload in
different tasks, we also constrained our choice of conditions such that one
set was chosen from the monitoring task whereas the other set of conditions
was chosen from the mental arithmetic task. These conditions included the
LP and LP/A3 conditions in the monitoring task and the A2 and A2/LP
conditions in the mental arithmetic task.

The second step of our procedure involved the derivation of each of the
ERP measures described in Table 7.1 for each of the single trials at each
electrode in the selected conditions. Thus, for each experimental trial a total
of 24 ERP measures were derived (i.e., the eight measures in Table 7.1 at
each of the three electrode sites). The vectors of ERP measures, with one
vector for each single trial, were then divided in half such that all of the even
trials were placed in one pool and all of the odd trials were placed in
different pool. There were approximately 75 trials in each of the two pools
for each subject for the monitoring task and 35 trials in each pool for each
subject for the mental arithmetic task.

The third step in our procedure involved the random selection of 1,000

TABLE 7.1

Measures Obtained From the Single-Trial Event-Related Brain Potentials in
the Monitoring and Mental Arithmetic Tasks

Measure Description
Base-peak amplitude Largest positive voltage between 275 and 750 milliseconds
(BPamp) poststimulus-
Mean voltage in a 100-miliseconds window centered on the point
Base-peak mean voltage picked as Bpamp
Base-peak root mean Root mean square amplitude computed in a 100-milliseconds
square window centered around the point picked as Bpamp
Mean voltage in a 100-milliseconds window centered on the
Cross-correlation mean point of maximum cross-correlation between the ERP and a
voltage 300-milliseconds cosine template
Slow wave 1 Mean voltage between 750 and 1,250 milliseconds poststimulus
Slow wave 2 Mean voltage between 900 and 1,100 milliseconds poststimulus
Root mean square amplitude computed between 750 and 1,250
Slow wave 1 rms milliseconds poststimulus

Root mean square amplitude computed between 900 and 1,100
Slow wave 2 rms milliseconds poststimulus
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samples, with replacement, of from 1 to n single-trial vectors of ERP
measures from each of the even and odd pools of measures in each of the
four conditions (i.e., the two conditions from the monitoring task and the
two conditions from the mental arithmetic task). The vectors were averaged
after each selection of 1,000 samples. Thus, for example, in the 1,000
samples of four trials the four vectors of measures selected in each sample
were averaged to produce a single vector of measures. This averaging
procedure was undertaken to increase the signal/noise ratio of the ERP
measures.

The fourth step in our analysis procedure involved the classification of
the sample vectors as representing one of the two workload levels for each
of the two tasks. The classification algorithm that we applied was a linear
stepwise discriminant analysis (LSDA). The discriminant functions were
developed for each task and subject on one half of the data and cross-
validated on the other half of the data set. In an effort to evaluate the utility
of spatial information (e.g., the distribution of the ERPs across different
scalp sites) in the discrimination between workload levels, separate discri-
minant functions were computed for the ERP data vectors at the Fz, Cz,
and Pz electrode sites as well as for a combined vector of the measures
across scalp electrodes. Thus, 8 ERP measures were submitted to the LSDA
procedure for each of the individual electrode functions and 24 measures
were submitted for each sample vector for the combined electrode function.

Figs. 7.3 and 7.4 provide a graphic representation of the efficiency of
discriminating between two workload levels for the mental arithmetic and
monitoring tasks, respectively. Plots are included for both the validation
data, on which the discriminant functions were derived (left side), and the
cross-validation data (right side), which was classified using the discrimi-
nant functions developed with the validation data. Separate panels are
provided for the single electrode functions as well as for the functions,
which included measures from the three different scalp locations (com-
bined). The 12 functions in each of the panels represent the 12 subjects who
participated in the study.

There are several noteworthy aspects of the figures. First, classification
accuracy is monotonically related to the amount of ERP data. This is not
particularly surprising, because the signal-to-noise ratio of the ERP com-
ponents increases with the square root of the number of trials averaged to
produce each sample. Second, combining information across different
spatial locations (in the present case the Fz, Cz, and Pz recording sites)
clearly improves the classification efficiency. This improved classification
efficiency is observed in (a) reduced variability among subjects, (b) in-
creases in the average asymptotic level of classification accuracy across
subjects, and {c) a reduction in the amount of ERP data necessary for
correctly discriminating between workload levels.



Validation Cross Validation

T T T T T R B e e e

100 | 100

90 Fz 90

80 80

70 70

60 60 |- -

50-.|.|.1.1.1.|.| 50-.1.1.1.|.|.|.|-
M SN DL B N e | LA L LN BN M an A m

100 100

90 Cz 90

80 80

70 70

60 60

50-.1.1.1.1.1.1.1- 50-11.|.|.|.|.|.|-
L L A B BN A mu | LN L B LB L B

100 | 100

90 Pz 90

80 80

70 70

60 60

50 50 P ST R N N T |

100 100

90 E 90

- ©O

80 ~ (1] 80
X J [ L

70 + - ‘a 70

60 | i £ 60 | -
! | O s .

so ot ot o0 v 1 (@) 50 Ll o 1 o0 0114
0 5 1015 20 25 30 35 ¢ 0 5 101520 25 30 35

FIG. 7.3. Classification efficiency functions derived from the LSDA procedure for
the mental arithmetic task for Fz, Cz, and Pz and combined electrode ERP measures.
The plots on the left represent the data that was used to derive the discriminant
functions while the plots on the right represent the other half of the data which was fit
with the derived discriminant functions. Each of the functions in each of the panels
represents a single subject. The conditions that were discriminated in these analyses
were A2 and A2/LP. The y axis represents the accuracy of discriminating between the
two workload conditions while the x axis represents the number of ERP samples (trials).
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FIG. 7.4. Classification efficiency functions derived from the LSDA procedure for
the monitoring task for Fz, Cz, Pz and combined electrode ERP measures. The plots on
the left represent the data that was used to derive the discriminant functions while the
plots on the right represent the other half of the data which was fit with the derived
discriminant functions. Each of the twelve functions in each of the panels represents a
single subject. The conditions that were discriminated in these analyses were LP and
LP/A3. The y axis represents the accuracy of discriminating between the two workload
conditions while the x axis represents the number of ERP samples (trials).
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Another important aspect of the figures is the relatively small loss of
classification accuracy when the discriminant functions derived on one data
set (validation panels) are applied to a different set of ERP data (cross-
validation panels). In fact, in the combined cross-validation sample, 90%
correct classification is achieved for all of the 12 subjects within 11 and 5
trials for the monitoring and mental arithmetic tasks, respectively. These
results suggest that the within-subject discriminant functions are quite
reliable across similar data sets.

Another important output of the discriminant analyses is provided in
Table 7.2. The table provides a summary of the ERP measures, at each
electrode site and for the two tasks, that had the highest weight in the
discriminant equations. Thus, the frequency of entries in different cells of
the table provides an indication of the relative importance of different ERP
measures in discriminating among the workload levels. There are a number
of interesting aspects of the data. First, the pattern of frequencies suggests
that no single measure was superior to the other measures across tasks and
electrode sites. There were, however, some interesting trends. For instance,
at the Pz electrode site the majority of the measures with the highest weights
(i.e. the first five measures) pertained to the P300 component. On the other
hand, at the Fz and Cz recording sites the measures with the highest weights
were more evenly divided among measures that pertained to the P300
component and measures of different aspects of late slow wave components
(i.e., the last four measures in the table). Second, the pattern of frequencies
suggest that no single measure of a particular ERP component was the best
discriminator for all of the subjects. Thus, in the case of the P300, both the
base-peak amplitude and the cross-correlation measures proved to be good
discriminators for different subjects in the sample. For the slow wave
component, the best univariate measures appeared to be the mean voltage

TABLE 7.2
Number of Subjects With the Highest Weight in the Discriminant Equations
for Each of the ERP Measures at Each of the Three Electrode Sites for the
Monitoring and Mental Arithmetic Tasks

Monitoring Task Arithmetic Task
Measure Fz Cz Pz Fz Cz Pz
Base-peak amplitude 2 2 3 2 1 6
Base-peak mean amplitude 1 1 1 0 2 2
Base-peak rms 0 1 1 2 1 0
Cross-correlation mean voltage 3 3 3 3 1 2
Slow wave 1 3 1 2 2 2 2
Slow wave 2 1 1 1 0 2 0
Slow wave 1 rms 2 3 1 1 1 0
Slow wave 2 rms 0 0 0 2 2 0




